Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
World J Gastrointest Oncol ; 16(4): 1437-1452, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660661

RESUMO

BACKGROUND: Gastric cancer, characterized by a multifactorial etiology and high heterogeneity, continues to confound researchers in terms of its pathogenesis. Curcumin, a natural anticancer agent, exhibits therapeutic promise in gastric cancer. Its effects include promoting cell apoptosis, curtailing tumor angiogenesis, and enhancing sensitivity to radiation and chemotherapy. Long noncoding RNAs (lncRNAs) have garnered significant attention as biomarkers for early screening, diagnosis, treatment, and drug response because of their remarkable specificity and sensitivity. Recent investigations have revealed an association between aberrant lncRNA expression and early diagnosis, clinical staging, metastasis, drug sensitivity, and prognosis in gastric cancer. A profound understanding of the intricate mechanisms through which lncRNAs influence gastric cancer development can provide novel insights for precision treatment and tailored management of patients with gastric cancer. This study aimed to unravel the potential of curcumin in suppressing the malignant behavior of gastric cancer cells by upregulating specific lncRNAs and modulating gastric cancer onset and progression. AIM: To identify lncRNAs associated with curcumin treatment and investigate the role of lncRNA AC022424.2 in the effects of curcumin on gastric cancer cell apoptosis, proliferation, and invasion. Furthermore, these findings were validated in clinical samples. METHODS: The study employed CCK-8 assays to assess the impact of curcumin on gastric cancer cell proliferation, flow cytometry to investigate its effects on apoptosis, and scratch and Transwell assays to evaluate its influence on the migration and invasion of BGC-823 and MGC-803 cells. Western blotting was used to gauge changes in the protein expression levels of CDK6, CDK4, Bax, Bcl-2, caspase-3, P65, and the PI3K/Akt/mTOR pathway in gastric cancer cell lines after curcumin treatment. Differential expression of lncRNAs before and after curcumin treatment was assessed using lncRNA sequencing and validated using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in BGC-823 and MGC-803 cells. AC022424.2-1 knockdown BGC-823 and MGC-803 cells were generated to scrutinize the impact of lncRNA AC022424.2 on apoptosis, proliferation, migration, and invasion of gastric cancer cells. Western blotting was performed to ascertain changes in the expression of proteins implicated in the PI3K/Akt/mTOR and NF-κB signaling pathways. RT-PCR was employed to measure lncRNA AC022424.2 expression in clinical gastric cancer tissues and to correlate its expression with clinical pathological characteristics. RESULTS: Curcumin induced apoptosis and hindered proliferation, migration, and invasion of gastric cancer cells in a dose- and time-dependent manner. LncRNA AC022424.2 was upregulated after curcumin treatment, and its knockdown enhanced cancer cell aggressiveness. LncRNA AC022424.2 may have affected cancer cells via the PI3K/Akt/mTOR and NF-κB signaling pathways. LncRNA AC022424.2 downregulation was correlated with lymph node metastasis, making it a potential diagnostic and prognostic marker. CONCLUSION: Curcumin has potential anticancer effects on gastric cancer cells by regulating lncRNA AC022424.2. This lncRNA plays a significant role in cancer cell behavior and may have clinical implications in diagnosis and prognosis evaluation. The results of this study enhance our understanding of gastric cancer development and precision treatment.

2.
Biomark Res ; 12(1): 36, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528632

RESUMO

Recombinant adenovirus (rAd) regimens, including replication-competent oncolytic adenovirus (OAV) and replication-deficient adenovirus, have been identified as potential cancer therapeutics. OAV presents advantages such as selective replication, oncolytic efficacy, and tumor microenvironment (TME) remodeling. In this perspective, the principles and advancements in developing OAV toolkits are reviewed. The burgeoning rAd may dictate efficacy of conventional cancer therapies as well as cancer immunotherapies, including cancer vaccines, synergy with adoptive cell therapy (ACT), and TME reshaping. Concurrently, we explored the potential of rAd hitchhiking to adoptive immune cells or stem cells, highlighting how this approach facilitates synergistic interactions between rAd and cellular therapeutics at tumor sites. Results from preclinical and clinical trials in which immune and stem cells were infected with rAd have been used to address significant oncological challenges, such as postsurgical residual tumor tissue and metastatic tissue. Briefly, rAd can eradicate tumors through various mechanisms, resulting from tumor immunogenicity, reprogramming of the TME, enhancement of cellular immunity, and effective tumor targeting. In this context, we argue that rAd holds immense potential for enhancing cellular immunity and synergistically improving antitumor effects in combination with novel cancer immunotherapies.

3.
Phytother Res ; 38(3): 1651-1680, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299680

RESUMO

Drug development for atherosclerosis, the underlying pathological state of ischemic cardiovascular diseases, has posed a longstanding challenge. Saponins, classified as steroid or triterpenoid glycosides, have shown promising therapeutic potential in the treatment of atherosclerosis. Through an exhaustive examination of scientific literature spanning from May 2013 to May 2023, we identified 82 references evaluating 37 types of saponins in terms of their prospective impacts on atherosclerosis. These studies suggest that saponins have the potential to ameliorate atherosclerosis by regulating lipid metabolism, inhibiting inflammation, suppressing apoptosis, reducing oxidative stress, and modulating smooth muscle cell proliferation and migration, as well as regulating gut microbiota, autophagy, endothelial senescence, and angiogenesis. Notably, ginsenosides exhibit significant potential and manifest essential pharmacological attributes, including lipid-lowering, anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects. This review provides a comprehensive examination of the pharmacological attributes of saponins in atherosclerosis, with particular emphasis on their role in the regulation of lipid metabolism regulation and anti-inflammatory effects. Thus, saponins may warrant further investigation as a potential therapy for atherosclerosis. However, due to various reasons such as low oral bioavailability, the clinical application of saponins in the treatment of atherosclerosis still needs further exploration.


Assuntos
Aterosclerose , Ginsenosídeos , Saponinas , Humanos , Saponinas/farmacologia , Estudos Prospectivos , Aterosclerose/tratamento farmacológico , Ginsenosídeos/farmacologia , Anti-Inflamatórios
4.
J Ethnopharmacol ; 324: 117814, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38286155

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tiaogan Daozhuo Formula (TGDZF) is a common formulation against atherosclerosis, however, there is limited understanding of its therapeutic mechanism. AIM OF THIS STUDY: To examine the effectiveness of TGDZF in the treatment of atherosclerosis and to explore its mechanisms. MATERIALS AND METHODS: In ApoE-/- mice, atherosclerosis was induced by a high-fat diet for 12 weeks and treated with TGDZF at different doses. The efficacy of TGDZF in alleviating atherosclerosis was evaluated by small animal ultrasound and histological methods. Lipid levels were measured by biochemical methods. The capacity of cholesterol efflux was tested with a cholesterol efflux assay in peritoneal macrophage, and the expression of AMPKα1, PPARγ, LXRα, and ABCA1 was examined at mRNA and protein levels. Meanwhile, RAW264.7-derived macrophages were induced into foam cells by ox-LDL, and different doses of TGDZF-conducting serum were administered. Similarly, we examined differences in intracellular lipid accumulation, cholesterol efflux rate, and AMPKα1, PPARγ, LXRα, and ABCA1 levels following drug intervention. Finally, changes in the downstream molecules were evaluated following the inhibition of AMPK by compound C or PPARγ silencing by small interfering RNA. RESULTS: TGDZF administration reduced aortic plaque area and lipid accumulation in aortic plaque and hepatocytes, and improved the serum lipid profiles of ApoE-/- mice. Further study revealed that its efficacy was accompanied by an increase in cholesterol efflux rate and the expression of PPARγ, LXRα, and ABCA1 mRNA and protein, as well as the promotion of AMPKα1 phosphorylation. Moreover, similar results were caused by the intervention of TGDZF-containing serum in vitro experiments. Inhibition of AMPK and PPARγ partially blocked the regulatory effect of TGDZF, respectively. CONCLUSIONS: TGDZF alleviated atherosclerosis and promoted cholesterol efflux from macrophages by activating the AMPK-PPARγ-LXRα-ABCA1 pathway.


Assuntos
Aterosclerose , PPAR gama , Animais , Camundongos , PPAR gama/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Colesterol/metabolismo , Receptores X do Fígado/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Células Espumosas , Apolipoproteínas E/genética , RNA Mensageiro/metabolismo
5.
Biofactors ; 50(1): 74-88, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37458329

RESUMO

Endothelial pyroptosis promotes cerebral ischemia/reperfusion injury (CIRI). Sodium Danshensu (SDSS) has been shown to attenuate CIRI and have anti-inflammatory properties in endothelial cells. However, the mechanism and effect of SDSS on alleviating endothelial pyroptosis after CIRI remains poorly understood. Thus, we aimed to investigate the efficacy and mechanism of SDSS in reducing endothelial pyroptosis. It has been shown that SDSS administration inhibited NLRP3 inflammasome-mediated pyroptosis. As demonstrated by protein microarrays, molecular docking, CETSA and ITDRFCETSA , SDSS bound strongly to CLIC4. Furthermore, SDSS can decrease its expression and inhibit its translocation. Its effectiveness was lowered by CLIC4 overexpression but not by knockdown. Overall The beneficial effect of SDSS against CIRI in this study can be ascribed to blocking endothelial pyroptosis by binding to CLIC4 and then inhibiting chloride efflux-dependent NLRP3 inflammasome activation.


Assuntos
Isquemia Encefálica , Lactatos , Traumatismo por Reperfusão , Humanos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Células Endoteliais/metabolismo , Simulação de Acoplamento Molecular , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/genética , Canais de Cloreto/genética , Canais de Cloreto/farmacologia
6.
Int J Gen Med ; 16: 5719-5727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084269

RESUMO

Background: Aldehyde dehydrogenase 2 (ALDH2) polymorphisms have been extensively studied in patients with hypertension (HTN) and diabetes mellitus (DM) in recent years. However, it is unclear whether ALDH2 polymorphisms are correlated with the risk of developing DM in patients with HTN. This study was designed to examine the association between ALDH2 single nucleotide polymorphism (SNP) rs671 and the risks of DM in patients with HTN. Methods: This study retrospectively analyzed the patients with HTN who were treated in Meizhou People's Hospital from August 2016 to December 2020, 788 HTN patients with DM as case patients, and 1632 HTN patients without DM history as controls. ALDH2 polymorphisms were analyzed using a polymerase chain reaction (PCR)-gene chip. Differences in ALDH2 genotypes between subjects and controls were compared. To analyze the relationship between ALDH2 genotype and DM risk, multiple logistic regression analysis was performed after adjusting for gender, age, smoking history, and drinking history. Results: The proportion of the G/A plus A/A genotype was significantly higher in patients with DM than in controls (52.8% vs 48.2%, P=0.033). DM patients with G/A genotype had lower LDL-C (P<0.017) than those with G/G genotype. The results of logistic regression analysis indicated that the G/A genotype increased the risk of DM in HTN patients, with an adjusted odds ratio (OR) of 1.209 (95% confidence interval (CI) 1.010-1.446) (P=0.038), whereas the G/A plus A/A genotype in the dominant model increased the risk of DM significantly, with an adjusted OR of 1.203 (95% CI 1.013-1.428) (P=0.035). Conclusion: ALDH2 A allele (G/A + A/A genotype) increased the risk of DM in patients with HTN.

7.
BMC Nephrol ; 24(1): 379, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115082

RESUMO

BACKGROUND: Advanced glycation end products (AGEs) deposited in the lens are correlated with those in the kidneys, indicating a possible value in evaluating diabetic kidney disease (DKD). This study explored the value of noninvasively measuring lens AGEs to diagnose and evaluate the severity of diabetic nephropathy in patients with type 2 diabetes mellitus (T2DM). METHODOLOGY: A total of 134 T2DM patients admitted to the Fifth People's Hospital of Shanghai from March 2020 to May 2021 were selected randomly. Patients were divided into low-, medium-and high-risk groups according to the risk assessment criteria for DKD progression and into DKD and non-DKD (non-DKD) groups according to the Guidelines for the Prevention and Treatment of Diabetic Nephropathy in China. The concentrations of noninvasive AGEs in the lens in all the groups were retrospectively analyzed. RESULTS: The concentration of noninvasive lens AGEs in the high-risk patients, according to the 2012 guidelines of the Global Organization for Improving the Prognosis of Kidney Diseases, was significantly higher than that in the remaining groups. Regression analysis suggested the value of lens AGEs in diagnosing DKD and evaluating DKD severity. Cox regression analysis indicated that the noninvasive lens AGE concentration was positive correlated with the course of disease. CONCLUSION: The receiver operating characteristic (ROC) curve suggested that using noninvasive lens AGE measurements has clinical value in the diagnosis of DKD (area under the curve 62.4%,95% confidence interval (CI) 52.4%-73.9%, p = 0.014) and in assessing the severity of DKD (area under the curve 83.2%, 95% CI 74.1%-92.3%, P < 0.001). Noninvasive lens AGE testing helps screen T2DM patients for DKD and evaluate the severity of DKD.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/diagnóstico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Estudos Retrospectivos , China/epidemiologia , Produtos Finais de Glicação Avançada
8.
Mediators Inflamm ; 2023: 7807302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954637

RESUMO

Background: Alleviating mild cognitive impairment (MCI) is crucial to delay the progression of Alzheimer's disease (AD). Jia-Wei-Kai-Xin-San (JWKXS) is applied for treating AD with MCI. However, the mechanism of JWKXS in the treatment of MCI is unclear. Thus, this study aimed to investigate the effect and mechanism of JWKXS in SAMP8 mice models of MCI. Methods: MCI models were established to examine learning and memory ability and explore the pathomechanisms in brain of SAMP8 mice at 4, 6, and 8 months. The mice were treated for 8 weeks and the effects of JWKXS on MCI were characterized through Morris water maze and HE/Nissl's/immunohistochemical staining. Its mechanism was predicted by the combination of UPLC-Q-TOF/MS and system pharmacology analysis, further verified with SAMP8 mice, BV2 microglial cells, and PC12 cells. Results: It was found that 4-month-old SAMP8 mice exhibited MCI. Two months of JWKXS treatment improved the learning and memory ability, alleviated the hippocampal tissue and neuron damage. Through network pharmacology, four key signaling pathways were found to be involved in treatment of MCI by JWKXS, including TLR4/NF-κB pathway, NLRP3 inflammasome activation, and intrinsic and extrinsic apoptosis. In vitro and in vivo experiments demonstrated that JWKXS attenuated neuroinflammation by inhibiting microglia activation, suppressing TLR4/NF-κB and NLRP3 inflammasome pathways, and blocking the extrinsic and intrinsic apoptotic pathways leading to neuronal apoptosis suppression in the hippocampus. Conclusion: JWKXS treatment improved the learning and memory ability and conferred neuroprotective effects against MCI by inducing anti-inflammation and antiapoptosis. Limitations. The small sample size and short duration of the intervention limit in-depth investigation of the mechanisms. Future Prospects. This provides a direction for further clarification of the anti-AD mechanism, and provides certain data support for the formulation to move toward clinical practice.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Ratos , Camundongos , Animais , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 4 Toll-Like/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico
9.
Food Sci Nutr ; 11(9): 4926-4947, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701204

RESUMO

Apples and their products exemplify the recently reemphasized link between dietary fruit intake and the alleviation of human disease. Their consumption does indeed improve human health due to their high phytochemical content. To identify potentially relevant articles from clinical trials, some epidemiological studies and meta-analyses, and in vitro and in vivo studies (cell cultures and animal models), PubMed was searched from January 1, 2012, to May 15, 2022. This review summarized the potential effects of apple and apple products (juices, puree, pomace, dried apples, extracts rich in apple bioactives and single apple bioactives) on health. Apples and apple products have protective effects against cardiovascular diseases, cancer, as well as mild cognitive impairment and promote hair growth, healing of burn wounds, improve the oral environment, prevent niacin-induced skin flushing, promote the relief of UV-induced skin pigmentation, and improve the symptoms of atopic dermatitis as well as cedar hay fever among others. These effects are associated with various mechanisms, such as vascular endothelial protection, blood lipids lowering, anti-inflammatory, antioxidant, antiapoptotic, anti-invasion, and antimetastatic effects. Meanwhile, it has provided an important reference for the application and development of medicine, nutrition, and other fields.

10.
Environ Sci Pollut Res Int ; 30(50): 109135-109144, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37770733

RESUMO

Excessive carbon emissions are the major challenge to global sustainable development. In the context of the coronavirus pandemic, pressure on global economic growth is gradually rising, threatening established carbon reduction targets. However, the relationship between economic growth pressures and carbon emission intensity has yet to be clearly discussed. Thus, this study quantitatively discusses the impacts of economic growth pressures from central (EGPN) and provincial (EGPP) governments on city carbon intensity. The study is based on data from China's city panels from 2005 to 2019. This study finds that (1) there is a U-shaped correlation between economic growth pressure and a city's carbon emission intensity, whether the economic growth pressure comes from the central government or the provincial government; (2) carbon emission intensity is more sensitive to economic growth pressure from the provincial government than it is to economic growth pressure from the central government. The findings of this study will help enhance the understanding of the relationship between economic growth pressure and carbon emission intensity, and can also provide a reference for global sustainable development that balances economic growth and environmental protection.


Assuntos
Carbono , Desenvolvimento Econômico , Carbono/análise , Dióxido de Carbono/análise , Cidades , China
11.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445682

RESUMO

Drug development for Alzheimer's disease, the leading cause of dementia, has been a long-standing challenge. Saponins, which are steroid or triterpenoid glycosides with various pharmacological activities, have displayed therapeutic potential in treating Alzheimer's disease. In a comprehensive review of the literature from May 2007 to May 2023, we identified 63 references involving 40 different types of saponins that have been studied for their effects on Alzheimer's disease. These studies suggest that saponins have the potential to ameliorate Alzheimer's disease by reducing amyloid beta peptide deposition, inhibiting tau phosphorylation, modulating oxidative stress, reducing inflammation, and antiapoptosis. Most intriguingly, ginsenoside Rg1 and pseudoginsenoside-F11 possess these important pharmacological properties and show the best promise for the treatment of Alzheimer's disease. This review provides a summary and classification of common saponins that have been studied for their therapeutic potential in Alzheimer's disease, showcasing their underlying mechanisms. This highlights the promising potential of saponins for the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Saponinas , Humanos , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Saponinas/farmacologia , Saponinas/uso terapêutico , Proteínas tau
12.
Biomed Pharmacother ; 165: 115153, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437377

RESUMO

BACKGROUND: The primary cause of acute cardiovascular events with high mortality is the rupture of atherosclerotic plaque followed by thrombosis. Sodium Danshensu (SDSS) has shown potential in inhibiting the inflammatory response in macrophages and preventing early plaque formation in atherosclerotic mice. However, the specific targets and detailed mechanism of action of SDSS are still unclear. OBJECTIVE: This study aims to investigate the efficacy and mechanism of SDSS in inhibiting inflammation in macrophages and stabilizing vulnerable plaques in atherosclerosis (AS). MATERIALS AND METHODS: The efficacy of SDSS in stabilizing vulnerable plaques was demonstrated using various techniques such as ultrasound, Oil Red O staining, HE staining, Masson staining, immunohistochemistry, and lipid analysis in ApoE-/- mice. Subsequently, IKKß was identified as a potential target of SDSS through protein microarray, network pharmacology analysis, and molecular docking. Additionally, ELISA, RT-qPCR, Western blotting, and immunofluorescence were employed to measure the levels of inflammatory cytokines, IKKß, and NF-κB pathway-related targets, thereby confirming the mechanism of SDSS in treating AS both in vivo and in vitro. Finally, the impact of SDSS was observed in the presence of an IKKß-specific inhibitor. RESULTS: Initially, the administration of SDSS led to a decrease in the formation and area of aortic plaque, while also stabilizing vulnerable plaques in ApoE-/- mice. Furthermore, it was identified that IKKß serves as the primary binding target of SDSS. Additionally, both in vivo and in vitro experiments demonstrated that SDSS effectively inhibits the NF-κB pathway by targeting IKKß. Lastly, the combined use of the IKKß-specific inhibitor IMD-0354 further enhanced the beneficial effects of SDSS. CONCLUSIONS: SDSS stabilized vulnerable plaques and suppressed inflammatory responses by inhibiting the NF-κB pathway through its targeting of IKKß.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , NF-kappa B/metabolismo , Quinase I-kappa B/metabolismo , Transdução de Sinais , Simulação de Acoplamento Molecular , Aterosclerose/metabolismo , Macrófagos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Apolipoproteínas E/metabolismo
13.
Int J Mol Med ; 51(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36960868

RESUMO

The inflammasome regulates innate immunity by serving as a signaling platform. The Nod­like receptor protein 3 (NLRP3) inflammasome, equipped with NLRP3, the adaptor protein apoptosis­associated speck­like protein (ASC) and pro­caspase­1, is by far the most extensively studied and well­characterized inflammasome. A variety of stimuli can activate the NLRP3 inflammasome. When activated, the NLRP3 protein recruits the adaptor ASC protein and activates pro­caspase­1, resulting in inflammatory cytokine maturation and secretion, which is associated with inflammation and pyroptosis. However, the aberrant activation of the NLRP3 inflammasome has been linked to various inflammatory diseases, including atherosclerosis, ischemic stroke, Alzheimer's disease, diabetes mellitus and inflammatory bowel disease. Therefore, the NLRP3 inflammasome has emerged as a promising therapeutic target for inflammatory diseases. In the present review, systematic searches were performed using 'NLRP3 inhibitor(s)' and 'inflammatory disease(s)' as key words. By browsing the literature from 2012 to 2022, 100 articles were retrieved, of which 35 were excluded as they were reviews, editorials, retracted or unavailable online, and 65 articles were included. According to the retrieved literature, the current understanding of NLRP3 inflammasome pathway activation in inflammatory diseases was summarize, and inhibitors of the NLRP3 inflammasome pathway targeting the NLRP3 protein and other inflammasome components or products were highlighted. Additionally, the present review briefly discusses the current novel efforts in clinical research.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Caspase 1 , Inflamação/tratamento farmacológico
14.
Anal Chem ; 95(4): 2452-2459, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36657472

RESUMO

For the early diagnosis and effective evaluation of treatment effects of inflammation, a de novo bioanalytical method is urgently needed to monitor the metabolite nitric oxide (NO) associated with inflammatory diseases. However, developing a reliable detection method with excellent water solubility, biocompatibility, long retention time, and blood circulation is still challenging. In this work, we reported for the first time a de novo host-guest self-assembled nanosensor CTA for the quantitative detection and visualization of NO levels in inflammatory models. CTA mainly consists of two parts: (i) an adamantyl-labeled guest small-molecule RN-adH containing a classical response moiety o-phenylenediamine for a chemical-specific response toward NO and fluorophore rhodamine B with excellent optical properties as an internal reference for self-calibration and (ii) a remarkable water-soluble and biocompatible supramolecular ß-cyclodextrin polymer (Poly-ß-CD) host. In the presence of NO, the o-phenylenediamine unit was reacted with NO at a low pH value of ∼7.0, accompanied by changes in the intensity of the two emission peaks corrected for each other and the change in fluorescence color of the CTA solution from fuchsia to pink. Furthermore, CTA was an effective tool for NO detection with a fast response time (∼60 s), high selectivity, and sensitivity (LOD: 22.3 nM). Impressively, the CTA nanosensor has successfully achieved the targeted imaging of NO in living inflammatory RAW 264.7 cells and mice models with satisfactory results, which can provide a powerful molecular tool for the visualization and assessment of the occurrence and development of NO-related inflammatory diseases in complex biosystems.


Assuntos
Corantes Fluorescentes , Óxido Nítrico , Animais , Camundongos , Corantes Fluorescentes/química , Fenilenodiaminas , Água/química
15.
Medicine (Baltimore) ; 102(52): e36675, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38206725

RESUMO

INTRODUCTION: Cases with early diagnosis of neonatal tuberous sclerosis syndrome (TSC) are relatively seldom seen, and misdiagnosis of intracranial hemorrhage is even more rare. We retrospectively analyzed the clinical data of a case of neonatal tuberous sclerosis with atypical early symptoms and misdiagnosed as more common intracranial hemorrhage of the newborn. PATIENT CONCERNS: The child was female and had no obvious cause of convulsion 12 days after birth. The local hospital was initially diagnosed as "neonatal intracranial hemorrhage, congenital heart disease," and still had convulsions after 5 days of treatment, so it was transferred to neonatal intensive care unit of our hospital. DIAGNOSIS: After admission, cardiac color ultrasound, magnetic resonance imaging, and electroencephalogram were performed, and TSC was diagnosed in combination with clinical symptoms. However, no known pathogenic mutations such as TSC1 and TSC2 were detected by peripheral blood whole exon sequencing. INTERVENTION: After a clear diagnosis, sirolimus, and vigabatrin were given. But there were still convulsions. Topiramate, valproic acid, and oxcarbazepine were successively added to the outpatient department for antiepileptic treatment, and vigabatrin gradually decreased. OUTCOME: Up to now, although the seizures have decreased, they have not been completely controlled. CONCLUSIONS: The TSC of neonatal tuberous sclerosis is different from that of older children. It is usually characterized by respiratory distress and arrhythmia, and may be accompanied by convulsions, but the activity between attacks is normal. However, neonatal intracranial hemorrhage can be caused by premature delivery, birth injury, hypoxia, etc. Its characteristics are acute onset, severe illness, and rapid progression. Consequently, the diagnosis of these 2 diseases should not only be based on medical imaging, but also be combined with their clinical characteristics. When the imaging features are inconsistent with the clinical diagnosis, a comprehensive evaluation should be made again. The timing and pattern of onset of neonatal convulsions can help in differential diagnosis. If there is cardiac rhabdomyoma, subependymal or cortical nodule, skin low melanoma, etc, the possibility of neonatal TSC should be considered, and the diagnosis should be made according to its diagnostic criteria to avoid or reduce misdiagnosis.


Assuntos
Doenças Fetais , Esclerose Tuberosa , Feminino , Humanos , Recém-Nascido , Erros de Diagnóstico , Doenças Fetais/diagnóstico , Hemorragia/complicações , Hemorragias Intracranianas/etiologia , Hemorragias Intracranianas/complicações , Mutação , Estudos Retrospectivos , Convulsões/complicações , Esclerose Tuberosa/complicações , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/genética , Vigabatrina/genética
16.
J Org Chem ; 87(24): 16592-16603, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433901

RESUMO

Direct C-H activation and functionalization offer a convenient protocol for pharmaceutical and material syntheses. Although versatile mechanisms have been proposed to depict transition-metal-catalyzed C-H activation, to date, the shared key agostic hydrogen intermediate in several major mechanisms has not been observed yet, which apparently puzzles the mechanism-based catalyst design. This work reports the direct observations of this intermediate in Pd(II)/Sc(III)-catalyzed C-H activation of acetanilides, and its stability and reactivity in C-H activation are investigated. Remarkably, this intermediate is only observed in electron-rich acetanilides, and the meta-substituent with increased σm constant generally accelerates C-H activation, a characteristic of the base-assisted C-H activation mechanism. This study has unveiled the masks of this intermediate with an understanding of its first-hand physicochemical properties, shedding new light on mechanism-based catalyst design.

17.
J Org Chem ; 87(21): 13919-13934, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36205496

RESUMO

Transition-metal ion catalyzed intramolecular dual C-H activation to construct polycyclic heteroarene skeletons is merited for its step and atom-economic advantages in organic synthesis. However, in most cases, stoichiometric oxidants, elevated temperature, and other harsh conditions were commonly faced for this reaction, which apparently block the synthetic applications. Herein, we report a Pd(II)/LA (LA: Lewis acid) catalyzed intramolecular dual C-H activation to construct indoloquinolinone derivatives under mild conditions with dioxygen as the sole oxidant. It was found that adding LA such as Sc3+ to Pd(OAc)2 sharply improved its catalytic efficiency, whereas Pd(OAc)2 alone was very sluggish. The activity improvement was attributed to the linkage of the Sc3+ cation to the Pd(II) species through a diacetate bridge that significantly enhanced the electrophilic properties of Pd(II) for dual C-H activation.

18.
Front Pharmacol ; 13: 946668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188542

RESUMO

The beneficial properties of Sodium Danshensu (SDSS) for controlling cerebral ischemia and reperfusion injury (CIRI) are elucidated here both in vivo and in vitro. SDSS administration significantly improved the viability of P12 cells, reduced lactate dehydrogenase (LDH) leakage, and decreased the apoptosis rate following exposure to an oxygen-glucose deprivation/reoxygenation (OGD) environment. In addition, the results of a HuprotTM human protein microarray and network pharmacology indicated that AKT1 is one of the main targets of SDSS. Moreover, functional experiments showed that SDSS intervention markedly increased the phosphorylation level of AKT1 and its downstream regulator, mTOR. The binding sites of SDSS to AKT1 protein were confirmed by Autodock software and a surface plasmon resonance experiment, the result of which imply that SDSS targets to the PH domain of AKT1 at ASN-53, ARG-86, and LYS-14 residues. Furthermore, knockdown of AKT1 significantly abolished the role of SDSS in protecting cells from apoptosis and necrosis. Finally, we investigated the curative effect of SDSS in a rat model of CIRI. The results suggest that administration of SDSS significantly reduces CIRI-induced necrosis and apoptosis in brain samples by activating AKT1 protein. In conclusion, SDSS exerts its positive role in alleviating CIRI by binding to the PH domain of AKT1 protein, further resulting in AKT1 activation.

19.
Biomed Pharmacother ; 155: 113696, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116247

RESUMO

Secondary insult from cerebral ischemia-reperfusion injury (CIRI) is a major risk factor for poor prognosis of cerebral ischemia. Saponins are steroid or triterpenoid glycosides with various pharmacological activities that are effective in treating CIRI. By browsing the literature from 2001 to 2021, 55 references involving 24 kinds of saponins were included. Saponins were shown to relieve CIRI by inhibiting oxidation stress, neuroinflammation, and apoptosis, restoring BBB integrity, and promoting neurogenesis and angiogenesis. This review summarizes and classifies several common saponins and their mechanisms in relieving CIRI. Information provided in this review will benefit researchers to design, research and develop new medicines to treat CIRI-related conditions with saponins.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Saponinas , Triterpenos , Humanos , Saponinas/farmacologia , Saponinas/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Estresse Oxidativo , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Esteroides/farmacologia
20.
Retina ; 42(10): 1859-1866, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36129263

RESUMO

PURPOSE: To compare clinical outcomes in eyes with refractory diabetic macular edema managed by vitrectomy combined with and without intentional macular detachment (IMD). METHODS: This is a retrospective cohort study. Forty-one eyes with diabetic macular edema that were previously poorly responsive to at least 5 monthly anti-vascular endothelial growth factor and at least twice switch therapy previously were included in this study. All eyes underwent pars plana vitrectomy with internal limiting membrane peeling, 21 of which were combined with an IMD procedure (assigned to an IMD group) and 20 of which did not have IMD performed (nMD group). Macular morphologic and visual acuity changes were analyzed from baseline through the endpoint (24 weeks) postprocedure, and were compared between groups. RESULTS: All patients completed at least six months of follow-up, with a mean of 29.7 weeks (24-56 weeks). The mean central retinal thickness reduction was greater in the IMD group than that in the nMD group at 1 week (P = 0.001), 2 weeks (P = 0.008), and 4 weeks (P = 0.004), but there was no statistically significant difference at 12 weeks (P = 0.051) or 24 weeks (P = 0.056). There were no significant differences in the mean changes of best-corrected visual acuity from baseline to the 24 weeks endpoint in either group (P = 0.83). CONCLUSION: Vitrectomy can release macular edema in the eyes with refractory diabetic macular edema. Combined with IMD technical, patients seemed to achieve a faster central retinal thickness decrease but neither the final morphologic outcome nor the visual acuity was affected.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Retinopatia Diabética/complicações , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/cirurgia , Fatores de Crescimento Endotelial , Humanos , Edema Macular/diagnóstico , Edema Macular/etiologia , Edema Macular/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Vitrectomia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...